
Training Session CN001

Containers and container orchestration

CN001 – Containers and container orchestration

Outline

• Introduction to containers

• Peeking under the hood: process isolation explained

• Differences between Linux containers and Windows containers

• Virtual Machine-based isolation implementations

• Hardware acceleration in containers

• Overview of container orchestration

• Orchestration with Kubernetes

CN001 – Containers and container orchestration

Introduction to containers

CN001 – Containers and container orchestration

Introduction to containers

Conceptually, containers can be thought of as a lightweight and flexible alternative to
Virtual Machines (VMs):

Containers

Hardware

H
o

st
G

u
es

t

Kernel

Applications Applications

Direct
access

Virtual Machines

Kernel

Applications Applications

Kernel

Virtualised
access

H
o

st
G

u
est

Kernel

Hardware

(although they’re actually much more than that!)

CN001 – Containers and container orchestration

Introduction to containers

• The defining feature of containers is that they share the kernel with the host system

• Direct access to the host kernel makes container creation as fast as process creation

• Containers typically utilise union filesystems to facilitate composing images from a set of
compact, reusable filesystem layers that are combined at runtime

Base OS Filesystem Layer

System Libraries Filesystem Layer

Application 1 Filesystem Layer

Base OS Filesystem Layer

System Libraries Filesystem Layer

Application 2 Filesystem Layer
Shared common layers

CN001 – Containers and container orchestration

Introduction to containers

Popular container frontends like Docker pair union filesystems with a configuration-as-code
approach to deterministically build images from declarative specifications:

Specifies the base image whose filesystem layers we will build upon
FROM ubuntu:18.04

Copies files from the host into the image (creates a new filesystem layer)
COPY . /app

Builds source code inside the image (creates a new filesystem layer)
RUN make /app

CN001 – Containers and container orchestration

Introduction to containers

Although popular tools such as Docker and Kubernetes typically act as de-facto standards
for building and running containers, the Open Container Initiative was founded in 2015 to
provide standard specifications that all container implementations should adhere to:

• OCI Runtime Specification defines how runtimes create and manage containers

• OCI Image Specification defines a standard format for packaging containers

CN001 – Containers and container orchestration

Introduction to containers

In addition to the Open Container Initiative, the Linux Foundation maintains a number of
other initiatives with a strong focus on the use of containers:

Oversees the development of key container
tools, including Kubernetes and containerd

Oversees projects that focus on CI/CD
tooling for building and deploying containers

CN001 – Containers and container orchestration

Introduction to containers

Important events in modern container history:

• 2007: Google contributes cgroups to the Linux kernel

• 2008: LXC is released by Google and IBM (along with other contributors)

• 2013: Docker is released, bringing containers to widespread attention

• 2014: Google releases Kubernetes, the first major container orchestration system

• 2014: CoreOS rkt is released, providing the first major alternative to Docker

CN001 – Containers and container orchestration

Introduction to containers

Important events in modern container history (continued):

• 2015: The Open Container Initiative (OCI) is founded

• 2015: The Cloud Native Computing Foundation (CNCF) is founded

• 2016: Microsoft adds container support to Windows Server 2016 and Windows 10

• 2019: The Continuous Delivery Foundation (CDF) is founded

• 2019: Kubernetes 1.14 introduces production-ready support for Windows containers

CN001 – Containers and container orchestration

Introduction to containers

The following operating systems support containers in one form or another:

• FreeBSD: supported in the form of FreeBSD jails, introduced in 2000

• Solaris: supported in the form of Solaris Zones, introduced in 2005

• Linux: supported since the early 2000s, but popularised by Docker in 2013

• Windows: supported since 2016, with improved orchestration support since 2018

• macOS: not officially supported, but that won’t stop us: https://macOScontainers.org

https://macoscontainers.org/

Post-Section Activity:

CN001 – Containers and container orchestration

01 – Building and running Linux containers

CN001 – Containers and container orchestration

Peeking under the hood:
process isolation explained

CN001 – Containers and container orchestration

Peeking under the hood: process isolation explained

Note: implementation details in this section refer to the Linux kernel,
but the key concepts are the same under other platforms

CN001 – Containers and container orchestration

User mode

Peeking under the hood: process isolation explained

Kernel mode

Device Drivers

Hardware

Process 1 Process 2 Process N

System Calls

Interrupt Handler

Kernel

(Windows abstracts this with
RPC calls to system services,
but they still trap down into
the kernel under the hood)

CN001 – Containers and container orchestration

Peeking under the hood: process isolation explained

Processes are really just Process Control Blocks managed by the kernel:

Thread ID

Execution State

Program Counter

Registers

Stack Pointers (Base + Limit)

…

Thread Control Block

Process ID

Execution State

Memory address space details

File descriptor list

Thread list

…

Process Control Block

CN001 – Containers and container orchestration

Peeking under the hood: process isolation explained

Every interaction between processes and their environment is abstracted by the kernel:

• Thread management (including CPU scheduling)

• Memory management (allocation, deallocation, etc.)

• Device access (I/O and filesystems, networking, etc.)

• IPC mechanisms (shared memory, PIDs, signals, etc.)

CN001 – Containers and container orchestration

Peeking under the hood: process isolation explained

This abstraction makes it easy to control what processes see and do:

• Namespaces partition environment visibility into distinct views

• Control groups apply resource accounting & access restrictions to process groups

CN001 – Containers and container orchestration

Peeking under the hood: process isolation explained

The first type of namespace in the Linux kernel was the Mount Namespace:

• This powered an early isolation mechanism known as a chroot jail

• Set the root filesystem directory for a process & its children using the chroot command

• Only the required files are mounted into the new filesystem

mnt

CN001 – Containers and container orchestration

Peeking under the hood: process isolation explained

Linux kernel developers soon realised the potential and added more namespaces:

The PID Namespace creates unique sets of PIDs for processes

The Network Namespace controls the visibility of network devices

The IPC Namespace controls the visibility of resources such as shared memory

The UTS Namespace controls the hostname that processes see

The User ID Namespace creates virtual user IDs that map to real user IDs

pid

net

ipc

UTS

user

CN001 – Containers and container orchestration

Peeking under the hood: process isolation explained

Every process belongs to one instance of each namespace, and each namespace instance
can contain an arbitrary number of processes:

Proc 1

Proc 2

Proc 3

Proc 4mnt net

ipc

These processes see the same
filesystem, but cannot share

memory or communicate
over localhost

These processes see different
filesystems and cannot share

memory, but can communicate
over localhost

These processes see different
filesystems and cannot

communicate over localhost,
but can share memory

CN001 – Containers and container orchestration

Peeking under the hood: process isolation explained

Like namespaces, every process belongs to one cgroup, and each cgroup can contain an
arbitrary number of processes:

Proc 1

Proc 2

Proc 3

Proc 4

These processes are
collectively restricted
to using 512MiB RAM

cgroup 1 cgroup 2

These processes are
collectively restricted
to executing on one

specific CPU core

CN001 – Containers and container orchestration

Peeking under the hood: process isolation explained

mnt pid net ipc UTS user cgroup

default default default default default default default

mnt1 pid1 net1 ipc1 UTS1 user1 cgroup1

mnt2 pid2 net2 ipc2 UTS2 user2 cgroup2

Host OS

Container 1

Container 2

CN001 – Containers and container orchestration

Peeking under the hood: process isolation explained

mnt pid net ipc UTS user cgroup

default default default default default default default

mnt1 pid1 default ipc1 UTS1 user1 cgroup1

mnt2 pid2 net2 ipc2 UTS2 user2 cgroup2

Host OS

Container 1

Container 2

CN001 – Containers and container orchestration

Peeking under the hood: process isolation explained

mnt pid net ipc UTS user cgroup

default default default default default default default

mnt1 pid1 net1 ipc1 UTS1 user1 cgroup1

mnt2 pid2 net2 ipc1 UTS2 user2 cgroup2

Host OS

Container 1

Container 2

CN001 – Containers and container orchestration

Peeking under the hood: process isolation explained

Containers are just an abstraction on top of the isolation features of the kernel:

• Each container commonly has its own unique cgroup and set of namespaces

• Containers can share a cgroup or any namespace(s) with the host or other containers

• Orchestration systems often group related containers using shared namespaces

Post-Section Activity:

CN001 – Containers and container orchestration

02 – Exploring namespace sharing

CN001 – Containers and container orchestration

Differences between
Linux containers and Windows containers

CN001 – Containers and container orchestration

Differences between Linux containers and Windows containers

Container support was added to the Windows kernel in Windows Server 2016:

• Extended the existing Windows Job Object functionality that groups processes

• Improved existing resource control mechanisms

• Added chroot support to the system-level Object Namespace (\DosDevices\C:, etc.)

• Added a new system service called the Host Compute Service (HCS) to abstract all this

CN001 – Containers and container orchestration

Differences between Linux containers and Windows containers

Interface:

Processes:

Kernel Compatibility:

Union Filesystem:

Exposed directly by the kernel

Only the entrypoint process & its children

True Union FS for everything

Full backwards compatibility

Abstracted by the Host Compute Service

Entrypoint & children + system services

True Union FS for registry, hybrid for NTFS

Containers must match compatible host kernel

CN001 – Containers and container orchestration

Differences between Linux containers and Windows containers

Operating System

Container Runtimes

Container Frontends Docker

containerd

runHCS shim

Kernel

Host Compute Service

(Windows provides runtime
support for other frontends,

but Docker currently calls
directly into the HCS)

Docker rkt

containerd

gVisor

Kernel

runC

Podman

CN001 – Containers and container orchestration

Differences between Linux containers and Windows containers

Unlike Linux containers, Windows containers only support Microsoft-supplied base images:

• Three base image variants exist:

• Nano Server
• Server Core
• Full Windows (version 1809 and newer only)

• New versions of each base image are released for each Windows kernel version

• Base filesystem layers are marked as “foreign layers” to ensure they’re always pulled
directly from Microsoft’s container registry

CN001 – Containers and container orchestration

Differences between Linux containers and Windows containers

Windows supports three types of containers:

HostProcess

“Not actually a
container”

a.k.a.

Process-isolated

“A traditional
container”

a.k.a.

Hyper V-isolated

“A container
wrapped in a VM”

a.k.a.

(Discussed in the next section)

CN001 – Containers and container orchestration

Differences between Linux containers and Windows containers

Jon Starks’ DockerCon 2016 presentation provides all the low-level details:
https://youtu.be/85nCF5S8Qok

https://youtu.be/85nCF5S8Qok

Post-Section Activity:

CN001 – Containers and container orchestration

03 – Building and running Windows containers

CN001 – Containers and container orchestration

Virtual Machine-based isolation implementations

CN001 – Containers and container orchestration

Virtual Machine-based isolation implementations

Process isolation is frequently associated with security holes that risk privilege escalation
attacks known as container breakouts:

• December 2014: CVE-2014-9357 demonstrates the first critical security bug in Docker

• February 2019: CVE-2019-5736 demonstrates a critical security bug in runC

• May 2019: three major security flaws found in the now-unmaintained rkt runtime

• July 2020: first breakout attack documented for process-isolated Windows containers

• September 2020: CVE-2020-14386 demonstrates a security bug in the Linux kernel that
affects all process isolation-based Linux container runtimes except for gVisor

CN001 – Containers and container orchestration

VM-based isolation implementations address security concerns by wrapping host kernels in
purpose-built lightweight virtual machines:

• Contain only the kernel and an agent to communicate with the host container runtime

• Optimised for faster startup and lower memory overheads than standard VMs

• Typically include platform-specific tweaks to help mitigate performance reductions

• Can run multiple containers within a single VM using process isolation

Virtual Machine-based isolation implementations

CN001 – Containers and container orchestration

Virtual Machine-based isolation implementations

Relays commands & I/O

Host

Kernel

Hardware

Host Agent

Lightweight Virtual Machine

C
o

n
ta

in
er

Kernel

Applications

Guest Agent

CN001 – Containers and container orchestration

Virtual Machine-based isolation implementations

VM isolation provides improved security but introduces limitations not present when using
process isolation:

• Inability to easily share hardware devices with the host system

• Reliant on nested virtualisation to function when the host is itself a VM

• Communication overheads between the host container runtime and VM guest agent

• Ability to share namespaces between related containers varies by implementation

CN001 – Containers and container orchestration

Virtual Machine-based isolation implementations

Windows containers support both process isolation mode and Hyper-V isolation mode:

• Runs a Windows Server kernel in a lightweight “utility VM”

• Facilitates running older kernel versions under newer versions of Windows

• The only supported isolation mode under Windows 10 prior to version 1809

CN001 – Containers and container orchestration

Virtual Machine-based isolation implementations

Kata Containers is an open source project that provides VM isolation for Linux containers:

• Drop-in replacement for the standard runC runtime

• Uses lightweight virtual machines similar to Hyper-V utility VMs

• Only supports sharing namespaces between related containers when using Kubernetes

Post-Section Activity:

CN001 – Containers and container orchestration

04 – Running Hyper-V isolated Windows containers

CN001 – Containers and container orchestration

Hardware acceleration in containers

CN001 – Containers and container orchestration

Hardware acceleration in containers

• Access to devices such as GPUs is useful for containerising specialised workloads

• Shared hardware access only available when using process isolation

• Exclusive hardware access theoretically possible when using VM isolation, but not
currently implemented for Linux or Windows containers

• Device support varies by platform and container runtime

CN001 – Containers and container orchestration

Hardware acceleration in containers

Linux containers can access NVIDIA GPUs using the NVIDIA Container Toolkit:

• Adds a prestart hook that works with the standard runC runtime

• Supports CUDA, OpenCL, OpenGL and Vulkan

• Base images with the required runtime libraries provided by NVIDIA on Docker Hub

CN001 – Containers and container orchestration

Hardware acceleration in containers

Linux containers can access AMD GPUs using the Radeon Open Compute (ROCm) platform:

• Kernel modules on the host communicate with runtime libraries inside containers

• Supports APIs that ROCm can run (HIP, OpenCL, CUDA, etc.)

• Base images with the required runtime libraries provided by AMD on Docker Hub

CN001 – Containers and container orchestration

Hardware acceleration in containers

Windows containers can access any GPU with a WDDM 2.5 or newer driver:

• Requires Docker 19.03 and Windows Server 2019 / Windows 10 version 1809 or newer

• Only works with the full-fat Windows base image (1809 or newer)

• Only supports DirectX and APIs built atop it (e.g. DirectML), no other APIs

Post-Section Activity:

CN001 – Containers and container orchestration

05 – Running GPU-accelerated Linux containers with the NVIDIA Container Toolkit

CN001 – Containers and container orchestration

Overview of container orchestration

CN001 – Containers and container orchestration

Overview of container orchestration

Tools like Docker provide a way of building and running containers, but we need container
orchestration frameworks to effectively deploy containers at scale:

• Manage scaling and scheduling of containers across a dynamic cluster of host nodes

• Manage network configuration and service discovery (both internal and external)

• Monitor container and host node health, automatically replacing crashed instances

• Manage security and provide storage and deployment of runtime secrets

CN001 – Containers and container orchestration

Overview of container orchestration

• The underlying cluster may change its size and composition dynamically

• The number of replicas for a service’s containers may scale based on demand

• Containers need to be scheduled (and often moved) in an efficient manner

• Bin packing allows us to maximise deployment density and minimise wasted resources

Concern #1: Scheduling and scaling

CN001 – Containers and container orchestration

Overview of container orchestration

• Load balancing routes requests to an ever-changing set of ephemeral containers

• In a microservices architecture, many internal services need to communicate

• An additional infrastructure layer known as a service mesh often provides advanced
networking functionality on top of the container orchestration framework itself

Concern #2: Network configuration and service discovery

CN001 – Containers and container orchestration

Overview of container orchestration

• If a container or host node crashes, it needs to be replaced automatically

• Liveness probes facilitate proactive culling & replacement of unresponsive instances

• Event/status metrics should be collected for improved visibility and traceability of issues

• Health checks can be used to control service migration during canary deployments

Concern #3: Health monitoring and self-healing

CN001 – Containers and container orchestration

Overview of container orchestration

• Security policies should be supported to restrict the access that containers have to both
internal (on-cluster) and external resources

• Sensitive information (passwords, SSH keys, API keys, etc.) should never be stored in
plaintext in container images or configuration files

• Secrets should be managed by the orchestration framework, encrypted at rest and
securely injected into containers at runtime via files or environment variables

Concern #4: Security and secrets management

CN001 – Containers and container orchestration

Overview of container orchestration

There are a number of container orchestration frameworks available, including:

• Kubernetes, created by Google

• Docker Swarm, created by Docker, Inc.

• Mesosphere Marathon, created by the Apache Software Foundation

Despite providing competing orchestration implementations, Docker Enterprise Edition and
Apache Mesosphere both support Kubernetes in addition to their own offerings.

CN001 – Containers and container orchestration

Orchestration with Kubernetes

CN001 – Containers and container orchestration

Orchestration with Kubernetes

Kubernetes is a container orchestration framework created by Google and subsequently
adopted as a project of the Cloud Native Computing Foundation (CNCF):

• Kubernetes is a modern successor to Google’s internal Borg cluster manager, which has
been running containers in production since 2003

• Google contributed Kubernetes to the CNCF as its first project in 2015

CN001 – Containers and container orchestration

Orchestration with Kubernetes

Kubernetes has become the de facto standard for container orchestration and managed
Kubernetes services are now offered by all major cloud providers:

• Google Kubernetes Engine (GKE)

• Amazon Elastic Kubernetes Service (EKS)

• Azure Kubernetes Service (AKS)

• Red Hat OpenShift Online

• IBM Cloud Kubernetes Service
Plus dozens of others…

CN001 – Containers and container orchestration

Orchestration with Kubernetes

The primitive unit of computation in Kubernetes is a Pod, which consists of a set of one or
more tightly-coupled containers that share the net, ipc and UTS namespaces:

The processes in the containers see different filesystems / user IDs /
PIDs / etc., but can share memory and communicate over localhost,

and can also bind-mount common shared volumes

Pod

Application

Container 1

Application

Container 2

CN001 – Containers and container orchestration

Orchestration with Kubernetes

Pods can be deployed and exposed using Deployments and Services for always-available
applications that service requests:

Deployment

Pod A - Replica 1 Pod A - Replica 2 Pod A - Replica 3

Pod B - Replica 1 Pod B - Replica 2 Pod B - Replica 3

ClientService
Requests

Load Balances

CN001 – Containers and container orchestration

Orchestration with Kubernetes

Pods can be also deployed using Jobs for batch processing tasks that run to completion and
stop, which can use replicas for batching data if desired:

Job

Pod A - Replica 1 Pod A - Replica 2 Pod A - Replica 3

Pod B - Replica 1 Pod B - Replica 2 Pod B - Replica 3

CN001 – Containers and container orchestration

Orchestration with Kubernetes

Kubernetes architecture is split into the control plane and cluster nodes. The control plane
contains the Kubernetes master components, which control the cluster nodes:

Node

Running Pods

“kubelet” Agent

Network Proxy

Control Plane

Kubernetes API Server

Scheduler

Controllers

Enforces configuration

CN001 – Containers and container orchestration

Control Plane

Kubernetes API Server

Scheduler

Controllers

Orchestration with Kubernetes

The Kubernetes API Server services requests to modify cluster configuration via the
Kubernetes REST API or frontends such as the kubectl command-line tool:

Configuration update requests

kubectl

REST API clients

CN001 – Containers and container orchestration

Orchestration with Kubernetes

Desired configuration states are specified declaratively using the JSON or YAML markup
languages (using YAML is recommended as a best practice):

apiVersion: apps/v1
kind: Deployment # Creates a Deployment (for running always-available services)
metadata:

name: nginx-deployment
labels:

app: nginx
spec:

replicas: 3 # Creates 3 replicas of our nginx pod
selector:

matchLabels:
app: nginx # Label matching is how the Deployment recognises the Pods it owns

template:
metadata:

labels: # These labels are used to identify the Pods that get created
app: nginx

spec:
containers: # The pod consists of a single container running nginx
- name: nginx
image: nginx:1.7.9
ports:
- containerPort: 80 # nginx will be servicing HTTP requests on TCP port 80

Post-Section Activity:

CN001 – Containers and container orchestration

06 – Deploying a simple Kubernetes service

CN001 – Containers and container orchestration

Related Resources

Introduction to containers:

• Red Hat knowledgebase article discussing the mechanics and history of Linux containers:
https://www.redhat.com/en/topics/containers/whats-a-linux-container

• Red Hat knowledgebase article discussing how containers fit into the context of cloud native apps:
https://www.redhat.com/en/topics/cloud-native-apps

• Official definition of cloud native computing from the CNCF (which lists containers as a key component):
https://github.com/cncf/toc/blob/master/DEFINITION.md

• Overview of Docker storage drivers, which discusses union filesystems:
https://docs.docker.com/storage/storagedriver/

https://www.redhat.com/en/topics/containers/whats-a-linux-container
https://www.redhat.com/en/topics/cloud-native-apps
https://github.com/cncf/toc/blob/master/DEFINITION.md
https://docs.docker.com/storage/storagedriver/

CN001 – Containers and container orchestration

Related Resources

Process isolation:

• Linux manpage for namespaces:
http://man7.org/linux/man-pages/man7/namespaces.7.html

• Linux Journal article discussing cgroups:
https://www.linuxjournal.com/content/everything-you-need-know-about-linux-containers-part-i-linux-control-groups-and-process

http://man7.org/linux/man-pages/man7/namespaces.7.html
https://www.linuxjournal.com/content/everything-you-need-know-about-linux-containers-part-i-linux-control-groups-and-process

CN001 – Containers and container orchestration

Related Resources

Windows containers:

• Jon Starks’ DockerCon presentation with all the low-level details about how Windows containers work:
https://youtu.be/85nCF5S8Qok

• Microsoft documentation for Windows containers:
https://docs.microsoft.com/en-us/virtualization/windowscontainers/

https://youtu.be/85nCF5S8Qok
https://docs.microsoft.com/en-us/virtualization/windowscontainers/deploy-containers/linux-containers

CN001 – Containers and container orchestration

Related Resources

VM isolation:

• Documentation for process-isolated Windows container breakout vulnerability:
https://unit42.paloaltonetworks.com/windows-server-containers-vulnerabilities/

• Microsoft documentation for Hyper-V isolation mode:
https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/hyperv-container

• Microsoft documentation for LCOW:
https://docs.microsoft.com/en-us/virtualization/windowscontainers/deploy-containers/linux-containers

• Kata Containers architecture documentation:
https://github.com/kata-containers/documentation/blob/master/design/architecture.md

https://unit42.paloaltonetworks.com/windows-server-containers-vulnerabilities/
https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/hyperv-container
https://docs.microsoft.com/en-us/virtualization/windowscontainers/deploy-containers/linux-containers
https://github.com/kata-containers/documentation/blob/master/design/architecture.md

CN001 – Containers and container orchestration

Related Resources

Hardware acceleration in containers:

• NVIDIA blog post introducing NVIDIA Docker and discussing how it works:
https://devblogs.nvidia.com/nvidia-docker-gpu-server-application-deployment-made-easy/

• AMD blog post discussing using ROCm with Docker containers:
https://community.amd.com/community/radeon-instinct-accelerators/blog/2018/11/13/the-amd-deep-learning-stack-using-docker

• Microsoft documentation for hardware device support in Windows containers:
https://docs.microsoft.com/en-us/virtualization/windowscontainers/deploy-containers/hardware-devices-in-containers

• Microsoft documentation for GPU acceleration in Windows containers:
https://docs.microsoft.com/en-us/virtualization/windowscontainers/deploy-containers/gpu-acceleration

https://devblogs.nvidia.com/nvidia-docker-gpu-server-application-deployment-made-easy/
https://community.amd.com/community/radeon-instinct-accelerators/blog/2018/11/13/the-amd-deep-learning-stack-using-docker
https://docs.microsoft.com/en-us/virtualization/windowscontainers/deploy-containers/hardware-devices-in-containers
https://docs.microsoft.com/en-us/virtualization/windowscontainers/deploy-containers/gpu-acceleration

CN001 – Containers and container orchestration

Related Resources

Container orchestration:

• Google publication describing the design of their internal scheduler, Borg (the predecessor of Kubernetes)
with an empirical evaluation of its performance:
https://ai.google/research/pubs/pub43438

• Wired article (from shortly before Kubernetes was released) discussing how Apache Mesos aimed to
replicate Google’s “secret weapon” (Borg):
https://www.wired.com/2013/03/google-borg-twitter-mesos/

• Red Hat knowledgebase article discussing service meshes:
https://www.redhat.com/en/topics/microservices/what-is-a-service-mesh

https://ai.google/research/pubs/pub43438
https://www.wired.com/2013/03/google-borg-twitter-mesos/
https://www.redhat.com/en/topics/microservices/what-is-a-service-mesh

CN001 – Containers and container orchestration

Related Resources

Kubernetes:

• Google blog post discussing the origins of Kubernetes and how it evolved from Borg:
https://cloud.google.com/blog/products/gcp/from-google-to-the-world-the-kubernetes-origin-story

• Official Kubernetes documentation, providing comprehensive details on every aspect of the framework:
https://kubernetes.io/docs/

https://cloud.google.com/blog/products/gcp/from-google-to-the-world-the-kubernetes-origin-story
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

All logos are the copyright, trademark or registered trademark of their respective owners.

Licensed under a Creative Commons Attribution 4.0 International License.

Prepared for TensorWorks by Dr Adam Rehn. Copyright © 2019 - 2021, TensorWorks Pty Ltd.

